12.5 C
New York
Thursday, June 23, 2022
HomeNewsM1 vs. M2 Chip Buyer's Guide: How Much Better Really Is M2?

M1 vs. M2 Chip Buyer’s Guide: How Much Better Really Is M2?

This month, Apple introduced the M2 chip – the second-generation custom silicon chip for the Mac. After the M1 chip revolutionized the Mac starting in November 2020, how much better really is the M2?

Apple says that the ā€ŒM2ā€Œ chip takes the performance per watt of the ā€ŒM1ā€Œ even further with an 18 percent faster CPU, a 35 percent more powerful GPU, and a 40 percent faster Neural Engine. There are also other significant enhancements such as more memory bandwidth and support for up to 24GB of unified memory.

As the second major iteration of Apple silicon, it may not be clear how significant of an improvement the ā€ŒM2ā€Œ is over the ā€ŒM1ā€Œ, especially as it sticks with a 5nm fabrication process, contrary to some rumors that suggested a bigger performance and efficiency leap would be in store. The ā€ŒM2ā€Œ chip debuts in the 13-inch MacBook Pro and the redesigned MacBook Air, so the extent to which the ā€ŒM2ā€Œ is better than its predecessor could be an important consideration when purchasing a new Mac. Read on to learn more about the differences between the two chips.

M1 Chip

  • Made using TSMC’s 5nm process (N5)
  • 16 billion transistors
  • 4 high-performance “Firestorm” cores
  • 4 energy-efficient “Icestorm” cores
  • 3.2GHz CPU clock speed
  • CPU cores first seen in the iPhone 12 lineup’s A14 Bionic chip
  • 8-core GPU
  • Support for 8GB or 16GB unified memory
  • 68.25GB/s memory bandwidth
  • Neural Engine
  • Media engine for hardware-accelerated H.264 and HEVC
  • Video decode engine
  • Video encode engine
  • Image signal processor (ISP)

M2 Chip

  • Made with TSMC’s enhanced 5nm process (N5P)
  • 20 billion transistors
  • 4 high-performance “Avalanche” cores
  • 4 energy-efficient “Blizzard” cores
  • 3.49GHz CPU clock speed
  • CPU cores first seen in the iPhone 13 lineup’s A15 Bionic chip
  • 10-core GPU
  • Support for 8GB, 16GB, or 24GB unified memory
  • 100GB/s memory bandwidth
  • 40 percent faster Neural Engine
  • Media engine for hardware-accelerated H.264, HEVC, ProRes, and ProRes RAW
  • Higher-bandwidth video decode engine
  • Video encode engine
  • ProRes encode and decode engine
  • “New” image signal processor (ISP)

Fabrication Process and Transistors

Like the A14 Bionic, the ā€ŒM1ā€Œ chip is built using TSMC’s first-generation 5nm fabrication process. On the other hand, the ā€ŒM2ā€Œ uses TSMC’s second-generation 5nm process like the A15 Bionic chip. The ā€ŒM2ā€Œ adds four billion additional transistors for a total of 20 billion – 25 percent more than ā€ŒM1ā€Œ. The enhanced 5nm fabrication process is at the heart of many of ā€ŒM2ā€Œ’s performance and efficiency improvements.

CPU

The ā€ŒM1ā€Œ and ā€ŒM2ā€Œ both have four high-performance and four energy-efficient cores, but while the ā€ŒM1ā€Œ features “Firestorm” and “Icestorm” cores from the A14 Bionic chip, the ā€ŒM2ā€Œ offers “Avalanche” and “Blizzard” from the A15 Bionic chip. According to Apple, this results in 18 percent greater multithreaded performance than ā€ŒM1ā€Œ.


In early Geekbench benchmarks, the ā€Œā€ŒM2ā€Œā€Œ, which runs at 3.49GHz compared to 3.2GHz for the ā€Œā€ŒM1ā€Œā€Œ, earned a single-core score of 1,919, which is roughly 12 percent faster than the 1,707 single-core score of the ā€Œā€ŒM1ā€Œā€Œ 13-inch MacBook Pro. The ā€Œā€ŒM2ā€Œā€Œ earned a multi-core score of 8,928, up about 20 percent from the 7,419 score of the ā€Œā€ŒM1ā€Œā€Œ model. This is right in line with Apple’s claim that the ā€Œā€ŒM2ā€Œā€Œ chip is up to 18 percent faster than the ā€Œā€ŒM1ā€Œ.

Both chips have high-performance cores with 192KB of L1 instruction cache and 128KB of L1 data cache. The energy-efficient cores have a 128KB L1 instruction cache, 64KB L1 data cache, and a shared 4MB L2 cache. The only difference here is that the shared L2 cache is larger on the ā€ŒM2ā€Œ chip — 16MB instead of 12MB on the ā€ŒM1ā€Œ.

GPU

The ā€ŒM2ā€Œ features two more GPU cores over the ā€ŒM1ā€Œ, resulting in a moderate boost in graphics performance. Apple says that the ā€ŒM2ā€Œ has up to 25 percent higher graphics performance than ā€ŒM1ā€Œ at the same power level, and up to 35 percent better performance at its max power. In early Geekbench Metal benchmarks, the ā€Œā€ŒM2ā€Œā€Œ chip scored 30,627, a notable improvement over the 21,001 score earned by the ā€Œā€ŒM1ā€Œā€Œ.

Media Engine

Both the ā€ŒM1ā€Œ and the ā€ŒM2ā€Œ have dedicated video encode and decode engines for hardware-accelerated H.264 and HEVC, but the ā€ŒM2ā€Œ’s video engines are also able to accelerate ProRes and ProRes RAW to enable playback of multiple streams of 4K and 8K video. In addition, the ā€ŒM2ā€Œ’s media engine includes a higher-bandwidth video decoder, supporting 8K H.264 and HEVC video.

Unified Memory

The ā€ŒM1ā€Œ and the ā€ŒM2ā€Œ come in configurations with 8GB or 16GB of unified memory, but the ā€ŒM2ā€Œ adds an additional, top-tier 24GB configuration. The ā€ŒM2ā€Œ’s memory controller can also deliver 100GB/s of unified memory bandwidth, a substantial improvement over the ā€ŒM1ā€Œ’s 68.25GB/s memory bandwidth.

Other Improvements

ā€ŒM2ā€Œ features improvements to several of Apple’s custom silicon technologies. For example, the Neural Engine can process up to 15.8 trillion operations per second — over 40 percent more than ā€ŒM1ā€Œ. The ā€ŒM2ā€Œ also contain’s Apple’s latest Secure Enclave and a new image signal processor (ISP) for better image noise reduction.

Final Thoughts

Overall, the ā€ŒM2ā€Œ chip offers moderate improvements over the ā€ŒM1ā€Œ, even if most ā€ŒM1ā€Œ users are unlikely to notice significant improvements when upgrading to the ā€ŒM2ā€Œ. The ā€ŒM2ā€Œ’s advancements are generally worthwhile, if not transformative, and the chip is certain to provide a more up-to-date experience with lower-spec Apple silicon machines – especially for those coming from an Intel-based machine.

While the ā€ŒM2ā€Œ offers improvements across the board thanks to its enhanced 5nm process, updated cores, and additional GPU cores, the major upgrades come to users who need to work with video, as well as those who have memory-intensive workflows. The ā€ŒM2ā€Œ’s higher-bandwidth video decoder and dedicated engine for ProRes and ProRes RAW video offer meaningful improvements for video editors, while the 24GB unified memory tier and 100GB/s of memory bandwidth significantly boost the capacity of ā€ŒM2ā€Œ machines to deal with memory-hungry applications and intense multitasking.Related Roundups: 13″ MacBook Pro, MacBook AirTags: Apple Silicon, M1, M2Buyer’s Guide: 13″ MacBook Pro (Buy Now), MacBook Air (Buy Now)Related Forums: MacBook Pro, MacBook Air
This article, “M1 vs. M2 Chip Buyer’s Guide: How Much Better Really Is M2?” first appeared on MacRumors.com

Discuss this article in our forums

MacRumors-All?d=6W8y8wAjSf4 MacRumors-All?d=qj6IDK7rITs

- Advertisment -

Latest